Instructions:

- All answers must be written clearly.
- You may use a calculator (TI-84 or below), but you must show all your work in order to receive credit. This includes any multiple choice questions! No credit will be given to any problem unless work is shown.
- Be sure to erase or cross out any work that you do not want graded.
- If two answers are circled in the multiple choice, then zero credit is given.
- If you need extra space, you may use the back sides of the exam pages (if you do, please write me a note so that I know where to look).
- Any cheating will result in an immediate F in the course.
- Partial credit will be given to open ended problems.

| Question: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Points: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Score: | | | | | | | | | | | | | | |

1. Study HW Problems 1-3 in Section 2.1 - First Order Linear Equations

- For more Sample Problems with solutions:
- Click here: http://tutorial.math.lamar.edu/Classes/DE/Linear.aspx

2. Study HW Problems 1-3 in Section 2.2 - First Order Separable

- For more Sample Problems with solutions:
- Click here: http://tutorial.math.lamar.edu/Classes/DE/Separable.aspx

3. Study HW Problems 1-7 in Section 2.4 - Mixing Problems - only setting up the IVP

- For more Sample Problems with solutions:
- Click here: http://tutorial.math.lamar.edu/Classes/DE/Modeling.aspx

4. Study HW Problems 1-4 in Section 2.7-Autonomous Equations - Phase Lines, Classify Eq. Solutions, and sketch possible solutions

- For more Sample Problems with solutions:
- Click here: http://tutorial.math.lamar.edu/Classes/DE/EquilibriumSolutions.aspx

5. Study HW Problems 1-5 in Section 3.1-2nd Order Linear Homogeneous constant coefficients - Real distinct roots

- For more Sample Problems with solutions:
- Click here: http://tutorial.math.lamar.edu/Classes/DE/RealRoots.aspx

6. Study HW Problems 1-2 in Section 3.3-2nd Order Linear Homogeneous constant coefficients - complex roots

- For more Sample Problems with solutions:
- Click here: http://tutorial.math.lamar.edu/Classes/DE/ComplexRoots.aspx

7. Study HW Problems 1-3 in Section 3.4.1 - 2nd Order Linear Homogeneous constant coefficients - Real repeated roots

- For more Sample Problems with solutions:
- Click here: http://tutorial.math.lamar.edu/Classes/DE/RepeatedRoots.aspx

8. Study HW Problems 1-7 in Section 3.5 - non-homogeneous equations - MOUC

- For more Sample Problems with solutions:
- Click here: http://tutorial.math.lamar.edu/Classes/DE/NonhomogeneousDE.aspx

9. Study HW Problems 1-6 in Section 4.1 - Higher Order Systems - homogeneous

- For more Sample Problems with solutions:
- http://tutorial.math.lamar.edu/Classes/DE/HOHomogeneousDE.aspx

10. Study HW Problems 1-4 in Section 4.2 - Higher Order Systems - non-homogeneous

- For more Sample Problems with solutions:
- http://tutorial.math.lamar.edu/Classes/DE/HOUndeterminedCoeff.aspx

11. Study only HW Problem 4 in Section 6.1 - Intro to Laplace Transforms

- For more Sample Problems with solutions:
- http://tutorial.math.lamar.edu/Classes/DE/LaplaceTransforms.aspx

12. Study only HW Problem 1-4 in Section 6.2 - Inverse Laplace

- For more Sample Problems with solutions:
- http://tutorial.math.lamar.edu/Classes/DE/InverseTransforms.aspx

13. Study only HW Problem 1-4 in Section 6.3 - Solving IVP with Laplace

- For more Sample Problems with solutions:
- http://tutorial.math.lamar.edu/Classes/DE/IVPWithLaplace.aspx

14. Study only HW Problem 1-3 in Section 6.4 - Heaviside functions

- For more Sample Problems with solutions:
- http://tutorial.math.lamar.edu/Classes/DE/StepFunctions.aspx

Formula Sheet

- 1st Order Linear ODE: $\frac{d y}{d t}+p(t) y=g(t)$
- Integrating Factor: $\mu(t)=e^{\int p(t) d t}$
- Then $y(t)=\frac{1}{\mu(t)}\left[\int \mu(t) g(t) d t+C\right]$
- General Solution Theorem for Homogeneous Equations:

Theorem 1 (General Solution Theorem) Suppose y_{1} and y_{2} are two solutions to the ODE

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

in some interval I, where p, q are continuous. Then the family of solutions

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

for arbtitrary c_{1}, c_{2} is the general solution (meaning includes every solution to the ODE) if and only if the Wronskian $W\left(y_{1}, y_{2}\right)$ is not zero for at least one point t_{0} in I.

$$
f(t)=\mathcal{L}^{-1}\{F(s)\} \quad F(s)=\mathcal{L}\{f(t)\}
$$

1.

1
$\frac{1}{s}$
2. $\quad e^{a t}$

$$
\frac{1}{s-a}
$$

3.

t^{n}

$$
\frac{n!}{s^{n+1}}
$$

4. $\quad t^{p}(p>-1)$

$$
\frac{\Gamma(p+1)}{s^{p+1}}
$$

5. $\quad \sin a t$

$$
\frac{a}{s^{2}+a^{2}}
$$

6. $\cos a t$

$$
\frac{s}{s^{2}+a^{2}}
$$

7. $\sinh a t$

$$
\frac{a}{s^{2}-a^{2}}
$$

8. $\cosh a t$

$$
\frac{s}{s^{2}-a^{2}}
$$

9.

$$
e^{a t} \sin b t
$$

$$
\frac{b}{(s-a)^{2}+b^{2}}
$$

10. $e^{a t} \cos b t$

$$
\frac{s-a}{(s-a)^{2}+b^{2}}
$$

11. $t^{n} e^{a t}$

$$
\frac{n!}{(s-a)^{n+1}}
$$

12. $\quad u_{c}(t)$

$$
\frac{e^{-c s}}{s}
$$

13. $u_{c}(t) f(t-c)$

$$
e^{-c s} F(s)
$$

14.

$$
e^{c t} f(t)
$$

$$
F(s-c)
$$

15.

$f(c t)$

$$
\frac{1}{c} F\left(\frac{s}{c}\right), c>0
$$

16. $\int_{0}^{t} f(t-\tau) g(\tau) d \tau$

$$
F(s) G(s)
$$

17.

$$
\delta(t-c)
$$

$$
e^{-c s}
$$

18. $\quad f^{(n)}(t)$

$$
s^{n} F(s)-s^{n-1} f(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0)
$$

19.

$$
(-t)^{n} f(t)
$$

$$
F^{(n)}(s)
$$

